A Review on Laser Powder Bed Fusion of Inconel 625 Nickel-Based Alloy

Author:

Tian ZhihuaORCID,Zhang Chaoqun,Wang DayongORCID,Liu WenORCID,Fang Xiaoying,Wellmann Daniel,Zhao YongtaoORCID,Tian YingtaoORCID

Abstract

The Inconel 625 (IN625) superalloy has a high strength, excellent fatigue, and creep resistance under high-temperature and high-pressure conditions, and is one of the critical materials used for manufacturing high-temperature bearing parts of aeroengines. However, the poor workability of IN625 alloy prevents IN625 superalloy to be used in wider applications, especially in applications requiring high geometrical complexity. Laser powder bed fusion (LPBF) is a powerful additive manufacturing process which can produce metal parts with high geometrical complexity and freedom. This paper reviews the studies that have been done on LPBF of IN625 focusing on the microstructure, mechanical properties, the development of residual stresses, and the mechanism of defect formation. Mechanical properties such as microhardness, tensile properties, and fatigue properties reported by different researchers are systematically summarized and analyzed. Finally, the remaining issues and suggestions on future research on LPBF of IN625 alloy parts are put forward.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Shanghai

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference77 articles.

1. Development of the additive manufacturing (3D printing) technology;Lu;Mach. Build. Autom.,2013

2. Additive Manufacturing: Current State, Future Potential, Gaps and Needs, and Recommendations

3. Research progress on selective laser melting 3D printing of titanium alloys and titanium matrix composites;Li;Mater. Sci. Technol.,2019

4. The research status and development trend of additive manufacturing technology

5. Additive Manufacturing Technologies: 3D Printing, Rapid Prototyping, and Direct Digital Manufacturing;Gibson,2010

Cited by 131 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3