Even Dispersion Design for a Compact Linear Loudspeaker Array with Adaptive Genetic Algorithm

Author:

Cai Juanjuan,Pang YongqiangORCID,Wang Hui,Wang Yutian

Abstract

Even dispersion is important for live sound reinforcement systems; however, it needs to be carefully designed when using a linear loudspeaker array. This is because the audience area is often large, while the loudspeakers are placed centrally in this case for convenience, and thus both the level and the frequency balance may not remain reasonably constant for all audiences. To solve this problem, the adaptive genetic algorithm is firstly introduced in the parameters optimization. Secondly, taking the radiation characteristics at different frequencies into account, a linear-phase non-uniform filter bank is proposed to decompose the broad frequency band into several sub-bands. The audio is re-synthesized with the optimized parameters in each frequency band for a linear loudspeaker array. To show the validity of the proposed method, the simulations and the experiments are conducted to demonstrate that the sound pressure level in the audience area is distributed within ± 1.33 dB, ranging from 200 Hz to 4000 Hz.

Funder

National Natural Science Foundation of China

Fundamental Research Funds for the Central Universities

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference48 articles.

1. Live sound subwoofer system performance quantification;Hill,2018

2. Sound Field Reproduction Using Planar and Linear Arrays of Loudspeakers

3. Ambisonics in multichannel broadcasting and video;Gerzon;J. Audio Eng. Soc.,1985

4. Theory and design of soundfield reproduction using continuous loudspeaker concept;Yan;IEEE Trans. Audio Speech Lang. Process.,2008

5. Optimal source placement for sound zone reproduction with first order reflections;Marek;J. Acoust. Soc. Am.,2014

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Robust Design of Multi-zone Sound Field Control Based on Subband Decomposition;2023 IEEE 11th Joint International Information Technology and Artificial Intelligence Conference (ITAIC);2023-12-08

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3