Author:
Wang Yifan,Gao Jingxiang,Li Zengke,Zhao Long
Abstract
Currently, indoor locations based on the received signal strength (RSS) of Wi-Fi are attracting more and more attention thanks to the technology’s low cost, low power consumption and wide availability in mobile devices. However, the accuracy of Wi-Fi positioning is limited, due to the signal fluctuation and indoor multipath interference. In order to overcome this problem, this paper proposes a robust and accurate Wi-Fi fingerprint location recognition method based on a deep neural network (DNN). A stacked denoising auto-encoder (SDAE) is used to extract robust features from noisy RSS to construct a feature-weighted fingerprint database offline. We use the combination of the weights of posteriori probability and geometric relationship of fingerprint points to calculate the coordinates of unknown points online. In addition, we use constrained Kalman filtering and hidden Markov models (HMM) to smooth and optimize positioning results and overcome the influence of gross error on positioning results, combined with characteristics of user movement in buildings, both dynamic and static. The experiment shows that the DNN is feasible for position recognition, and the method proposed in this paper is more accurate and stable than the commonly used Wi-Fi positioning methods in different scenes.
Funder
National Natural Science Foundation of China
Natural Science Foundation of Jiangsu Province
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
21 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献