Abstract
Hepatic cancers represent an important worldwide health issue where surgery alone in most cases is not a feasible therapeutic solution since most tumors are non-resectable. Despite targeted therapies showing positive results in other areas of cancer treatment, in the case of liver tumors, no low-risk delivery methods have been identified. Based on a risk assessment approach, this paper proposes a technical solution in the form of a robotic system capable of achieving a reliable delivery method for targeted treatment, focusing on the patient safety and therapeutic efficiency. The design of the robotic system starts from the definition of the design constraints with respect to the medical protocol. An analytical hierarchy process is used to prioritize the data correlated with the technical characteristics of a new robotic system, aiming to minimize risks associated with the medical procedure. In a four-phase quality function deployment, the technical solution is evaluated with respect to the quality characteristics, functions, subsystems, and components aiming to achieve a safe and reliable system with high therapeutic efficiency. The results lead to the concept of HeRo, a parallel robotic system for the reliable targeted treatment of non-resectable liver tumors.
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
17 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献