Finite Element Method and Cut Bar Method-Based Comparison Under 150°, 175° and 310 °C for an Aluminium Bar

Author:

Gonzalez Duran José Eli EduardoORCID,González-Rodríguez Oscar J.,Zamora-Antuñano Marco AntonioORCID,Rodríguez-Reséndiz JuvenalORCID,Méndez-Lozano NéstorORCID,Gómez Meléndez Domingo José,García García Raul

Abstract

Analyses were developed using a finite element method of the experimental measurement system for thermal conductivity of solid materials, used by the Centro Nacional de Metrología (CENAM), which operates under a condition of permanent heat flow. The CENAM implemented a thermal conductivity measurement system for solid materials limited in its operating intervals to measurements of maximum 300 ° C for solid conductive materials. However, the development of new materials should be characterised and studied to know their thermophysical properties and ensure their applications to any temperature conditions. These task demand improvements in the measurement system, which are proposed in the present work. Improvements are sought to achieve high-temperature measurements in metallic materials and conductive solids, and this system may also cover not only metallic materials. Simulations were performed to compare the distribution of temperatures developed in the measurement system as well as the radial heat leaks, which affect the measurement parameters for an aluminium bar, and uses copper bars as reference material. The simulations were made for measurements of an aluminium bar at a temperature of 150 ° C, in the plane and 3D, another at 175 ° C and one more known maximum temperature reached by a sample of the aluminium bar with a new heater acquired at 310 ° C.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3