Abstract
Herein, we report the performances of crosslinked facilitated transport membranes based on carboxymethylated nanofibrils of cellulose (cmNFC) and polyvinylamine (PVAm) with the use of 3-(2-Aminoethylamino) propyltrimethoxysilane (AEAPTMS) as second fixed carrier for CO2 selectivity and permeability. The grafting of AEAPTMS on cmNFC was optimized by following the hydrolysis/condensation kinetics by 29Si Nuclear Magnetic Resonance (NMR) analyses and two different strategies of the process of membrane production were investigated. In optimized conditions, around 25% of the -COOH functions from cmNFC have crosslinked with PVAm. The crosslinked membranes were less sensitive to liquid water and the crystallinity of PVAm was tuned by the conditions of the membrane elaboration. In both processes, CO2 selectivity and permeability were enhanced especially at high water vapor concentration by the use of PVAm and AEAPTMS suggesting the existence of a facilitation effect due to amine-CO2 interaction, while the mechanical integrity of the swollen membranes remained intact.
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献