An Ultra-Wideband Microwave Photonic Channelized Receiver with Zero-IF Architecture

Author:

Chen Bo,Fan Yangyu,Tian Zhou,Wang Wuying,Kang Bochao,Jiang Wei,Gao YongshengORCID

Abstract

A scheme for realizing a zero-intermediate frequency (IF) channelized receiver using a dual-polarization quadrature phase-shift keying (DP-QPSK) modulator and a narrow-band optical filter is proposed. The channelized system only requires one optical frequency comb to achieve zero-IF multi-channel reception of wideband signals, and the spacing of the optical frequency comb only needs to be equal to the sub-channel width, which is very easy to implement. It is found that using photonic IQ demodulation and balanced detection and reception technology can not only eliminate many disadvantages of the traditional zero-IF receiver, including local oscillator (LO) leakage, direct current (DC) offset, even-order distortion, and in-phase/quadrature (I/Q) imbalance, but also reduce the bandwidth and sample rate of the analog-to-digital converter (ADC). It is theoretically proven that the radio frequency (RF) signal with a bandwidth of 3 GHz can be divided into five sub-channels with a bandwidth of 600 MHz and finally demodulated to I/Q basebands, which are also verified with simulation.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Wideband image-reject RF channelization based on soliton microcombs (invited paper);APL Photonics;2023-09-01

2. Deep learning-based image-like channelization for broadband receiver;Advanced Optical Manufacturing Technologies and Applications 2022; and 2nd International Forum of Young Scientists on Advanced Optical Manufacturing (AOMTA and YSAOM 2022);2023-01-09

3. Advances in Integrated Microwave Photonic Signal Processors;2021 CIE International Conference on Radar (Radar);2021-12-15

4. High-resolution microwave frequency measurement based on dynamic frequency-to-power mapping;Optics Express;2021-12-07

5. 一种可重构的微波光子混频移相系统;ACTA PHOTONICA SINICA;2021

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3