An EEG Feature Extraction Method Based on Sparse Dictionary Self-Organizing Map for Event-Related Potential Recognition

Author:

Feng Shang,Li Haifeng,Ma Lin,Xu Zhongliang

Abstract

In the application of the brain-computer interface, feature extraction is an important part of Electroencephalography (EEG) signal classification. Using sparse modeling to extract EEG signal features is a common approach. However, the features extracted by common sparse decomposition methods are only of analytical meaning, and cannot relate to actual EEG waveforms, especially event-related potential waveforms. In this article, we propose a feature extraction method based on a self-organizing map of sparse dictionary atoms, which can aggregate event-related potential waveforms scattered inside an over-complete sparse dictionary into the code book of neurons in the self-organizing map network. Then, the cosine similarity between the EEG signal sample and the code vector is used as the classification feature. Compared with traditional feature extraction methods based on sparse decomposition, the classification features obtained by this method have more intuitive electrophysiological meaning. The experiment conducted on a public auditory event-related potential (ERP) brain-computer interface dataset showed that, after the self-organized mapping of dictionary atoms, the neurons’ code vectors in the self-organized mapping network were remarkably similar to the ERP waveform obtained after superposition and averaging. The feature extracted by the proposed method used a smaller amount of data to obtain classification accuracy comparable to the traditional method.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Computational Mathematics,Computational Theory and Mathematics,Numerical Analysis,Theoretical Computer Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3