Flood Hazard Assessment for the Tori Levee Breach of the Indus River Basin, Pakistan

Author:

Naeem Babar,Azmat Muhammad,Tao Hui,Ahmad Shakil,Khattak Muhammad Umar,Haider SajjadORCID,Ahmad SajjadORCID,Khero Zarif,Goodell Christopher R.

Abstract

Levee breaches are some of the most common hazards in the world and cause the loss of lives, livelihoods, and property destruction. During the 2010 flood in Pakistan, the most devastating breach occurred at Tori Levee on the right bank of the Indus River, downstream of the Guddu Barrage, which caused residual floods in northern Sindh and the adjoining regions of the Balochistan province. In this study, 2D unsteady flow modeling performed for Tori Levee breach computed residual flood inundation by coupling a HEC-RAS (Hydrological Engineering Centre—River Analysis System) 2D hydraulic model with remote sensing and Geographic Information System techniques. The model performance was judged by comparing the observed and simulated water levels (stage) during peak flow at seven different gauging stations located within the Indus River reach and daily flood extents and multi-day composites. The quantitative values for the calibration and validation of the HEC-RAS model showed good performance with a range of difference from 0.13 to −0.54 m between the simulated and observed water levels (stage), 84% match for the maximum flood inundation area, and 73.2% for the measure of fit. The overall averages of these values for the daily flood comparison were 57.12 and 75%, respectively. Furthermore, the simulated maximum flow passed through the Tori Levee breach, which was found to be 4994.47 cumecs (about 15% of peak flow) with a head water stage of 71.56 m. By using the simulated flows through the Tori Levee breach, the flood risk maps for the 2010 flood identified hazard zones according to the flood characteristics (depth, velocity, depth times velocity, arrival time, and duration). All the flood risk maps concluded the fact that the active flood plain was uninhabitable under flood conditions.

Funder

National Key Research and Development Program of China

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

Reference58 articles.

1. Flood Hazard Assessment of the Urban Area of Tabuk City, Kingdom of Saudi Arabia by Integrating Spatial-Based Hydrologic and Hydrodynamic Modeling

2. Human response to hydro-meteorological disasters: A case study of the 2010 flash floods in Pakistan;Ahmad;J. Geogr. Reg. Plan.,2011

3. Global Climate Risk Index 2012;Harmeling,2011

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3