Smart Automotive Diagnostic and Performance Analysis Using Blockchain Technology

Author:

Yassin Ahmed Mohsen1,Aslan Heba Kamal12ORCID,Abdel Halim Islam Tharwat12ORCID

Affiliation:

1. School of Information Technology and Computer Science (ITCS), Nile University, Giza 12677, Egypt

2. Center for Informatics Science (CIS), Nile University, 26th of July Corridor, Sheikh Zayed 12677, Egypt

Abstract

The automotive industry currently is seeking to increase remote connectivity to a vehicle, which creates a high demand to implement a secure way of connecting vehicles, as well as verifying and storing their data in a trusted way. Furthermore, much information must be leaked in order to correctly diagnose the vehicle and determine when or how to remotely update it. In this context, we propose a Blockchain-based, fully automated remote vehicle diagnosis system. The proposed system provides a secure and trusted way of storing and verifying vehicle data and analyzing their performance in different environments. Furthermore, we discuss many aspects of the benefits to different parties, such as the vehicle’s owner and manufacturers. Furthermore, a performance evaluation via simulation was performed on the proposed system using MATLAB Simulink to simulate both the vehicles and Blockchain and give a prototype for the system’s structure. In addition, OMNET++ was used to measure the expected system’s storage and throughput given some fixed parameters, such as sending the periodicity and speed. The simulation results showed that the throughput, end-to-end delay, and power consumption increased as the number of vehicles increased. In general, Original Equipment Manufacturers (OEMs) can implement this system by taking into consideration either increasing the storage to add more vehicles or decreasing the sending frequency to allow more vehicles to join. By and large, the proposed system is fully dynamic, and its configuration can be adjusted to satisfy the OEM’s needs since there are no specific constraints while implementing it.

Publisher

MDPI AG

Subject

Control and Optimization,Computer Networks and Communications,Instrumentation

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3