Abstract
Breastfeeding can be a vital way of acquiring passive immunity via the transfer of antibodies from the mother to the breastfeeding infant. Recent evidence points to the fact that human milk contains immunoglobulins (Ig) against the SARS-CoV-2 virus, either after natural infection or vaccination, but whether these antibodies can resist enzymatic degradation during digestion in the infant gastrointestinal (GI) tract or indeed protect the consumers remains inconclusive. Herein, we evaluated the levels of IgG, IgA, and secretory IgA (SIgA) antibodies against the spike protein of SARS-CoV-2 in 43 lactating mothers who received at least two doses of either an mRNA-based vaccine (Pfizer/BioNTech, Moderna; n = 34) or an adenovirus-based vaccine (AstraZeneca; n = 9). We also accessed the potential persistence of SARS-CoV-2 IgA, IgG, and secretory IgA (SIgA) antibodies from vaccinated women in the GI tract of the infants by means of a static in vitro digestion protocol. Our data depict that, although slightly reduced, the IgA antibodies produced after vaccination resist both the gastric and intestinal phases of infant digestion, whereas the IgGs are more prone to degradation in both phases of digestion. Additionally, SIgA antibodies were found to greatly resist the gastric phase of digestion albeit showing some reduction during the intestinal phase. The evaluation of the vaccine induced Ig profile of breastmilk, and the extent to which these antibodies can resist digestion in the infant GI tract provide important information about the potential protective role of this form of passive immunity that could help decision making during the COVID-19 pandemic and beyond.
Funder
Department of Life and Health Sciences, University of Nicosia, Cyprus
Subject
Food Science,Nutrition and Dietetics
Cited by
13 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献