Author:
Huang Guangjian,Wasti Shahbaz Hassan,Wei Lina,Jiang Yuncheng
Abstract
In most previous research, “semantic computing” refers to computational implementations of semantic reasoning. It lacks support from the formal theory of computation. To provide solid foundations for semantic computing, researchers propose a different understanding of semantic computing based on finite automata. This approach provides a computer theoretical approach to semantic computing. But finite automata are not capable enough to deal with imprecise knowledge. Therefore, in this paper, we provide foundations for semantic computing based on probabilistic automata. Even though traditional probabilistic automata can handle imprecise knowledge, their limitation resides in their being defined on a fixed finite input alphabet. This deeply restricts the abilities of automata. In this paper, we rebuild traditional probabilistic automata for semantic computing. Furthermore, our new probabilistic automata are robust enough to handle any alphabet as input. They have better performances in many applications. We provide an application for weather forecasting, a domain for which traditional probabilistic automata are not effective due to their finite input alphabet. Our new probabilistic automata can overcome these limitations.
Funder
The National Natural Science Foundation of China
The Project of Science and Technology in Guangzhou in China
Subject
General Physics and Astronomy
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Generalized rough and fuzzy rough automata for semantic computing;International Journal of Machine Learning and Cybernetics;2022-09-21