On the Power of Microwave Communication Data to Monitor Rain for Agricultural Needs in Africa

Author:

David NoamORCID,Liu Yanyan,Kumah Kingsley K.ORCID,Hoedjes Joost C. B.,Su Bob Z.,Gao H. Oliver

Abstract

Over the last two decades, prevalent technologies and Internet of Things (IoT) systems have been found to have potential for carrying out environmental monitoring. The data generated from these infrastructures are readily available and have the potential to provide massive spatial coverage. The costs involved in using these data are minimal since the records are already generated for the original uses of these systems. Commercial microwave links, which provide the underlying framework for data transfer between cellular network base stations, are one example of such a system and have been found useful for monitoring rainfall. Wireless infrastructure of this kind is deployed widely by communication providers across Africa and can thus be used as a rainfall monitoring device to complement the sparse proprietary resources that currently exist or to substitute for them where alternatives do not exist. Here we focus this approach’s potential to acquire valuable information required for agricultural needs across Africa using Kenya as an example.

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3