Docking Simulation and Sandwich Assay for Aptamer-Based Botulinum Neurotoxin Type C Detection

Author:

Oh In-Hwan,Park Dae-Young,Cha Ji-Man,Shin Woo-Ri,Kim Ji Hun,Kim Sun Chang,Cho Byung-Kwan,Ahn Ji-Young,Kim Yang-Hoon

Abstract

Aptamers are biomaterials that bind to a target molecule through a unique structure, and have high applicability in the diagnostic and medical fields. To effectively utilize aptamers, it is important to analyze the structure of the aptamer binding to the target molecule; however, there are difficulties in experimentally identifying this structure. In the modern pharmaceutical industry, computer-driven docking simulations that predict intermolecular binding models are used to select candidates that effectively bind target molecules. Botulinum toxin (BoNT) is the most poisonous neurotoxin produced from the Clostridium botulinum bacteria, and BoNT/C, one of the eight serotypes, causes paralysis in livestock. In this study, the aptamers that bound to BoNT/C were screened via the systematic evolution of ligands by exponential enrichment, and the binding affinity analysis and binding model were evaluated to select optimal aptamers. Based on surface plasmon resonance analysis and molecular operating environment docking simulation, a pair of aptamers that had high binding affinity to BoNT/C and were bound to different BoNT/C sites were selected. A sandwich assay based on this aptamer pair detected the BoNT/C protein to a concentration as low as ~0.2 ng Ml−1. These results show that docking simulations are a useful strategy for screening aptamers that bind to specific targets.

Funder

National Research Foundation of Korea

Publisher

MDPI AG

Subject

Clinical Biochemistry,General Medicine

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3