Fast Adhesion of Gold Nanoparticles (AuNPs) to a Surface Using Starch Hydrogels for Characterization of Biomolecules in Biosensor Applications

Author:

Heredia Frances L.ORCID,Resto Pedro J.ORCID,Parés-Matos Elsie I.ORCID

Abstract

Gold nanoparticles (AuNPs) are the most thoroughly studied nanoparticles because of their remarkable optical properties. Color changes in assays that use AuNPs can be easily observed with the naked eye, resulting in sensitive colorimetric methods, useful for detecting a variety of biological molecules. However, while AuNPs represent an excellent nano-platform for developing analytical methods for biosensing, there are still challenges that must be overcome before colloidal AuNPs formulation can be successfully translated into practical applications. One of those challenges is the ability to immobilize AuNPs in a solid support. There are many difficulties with controlling both the cluster size and the adhesion of the coatings formed. In addition, many of the techniques employed are expensive and time-consuming, or require special equipment. Thus, a simple and inexpensive method that only requires common lab equipment for immobilizing AuNPs on a surface using Starch Hydrogels has been developed. Starch hydrogels confer a 400% increase in stability to the nanoparticles when exposed to changes in the environment while also allowing for macromolecules to interact with the AuNPs surface. Several starch derivatives were tested, including, dextrin, beta-cyclodextrin and maltodextrin, being dextrin the one that conferred the highest stability. As a proof-of-concept, a SlipChip microfluidic sensor scheme was developed to measure the concentration of DNA in a sample. The detection limit of our biosensor was found to be 25 ng/mL and 75 ng/mL for instrument and naked eye detection, respectively.

Funder

National Institutes of Health

Publisher

MDPI AG

Subject

Clinical Biochemistry,General Medicine

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3