Development of an Electrochemical Immunosensor for Specific Detection of Visceral Leishmaniasis Using Gold-Modified Screen-Printed Carbon Electrodes

Author:

Martins Beatriz R.,Barbosa Yanne O.,Andrade Cristhianne M. R.,Pereira Loren Q.,Simão Guilherme F.,de Oliveira Carlo J.,Correia Dalmo,Oliveira Robson T. S.,da Silva Marcos V.ORCID,Silva Anielle C. A.,Dantas Noelio O.,Rodrigues Virmondes,Muñoz Rodrigo A. A.ORCID,Alves-Balvedi Renata P.ORCID

Abstract

Visceral leishmaniasis is a reemerging neglected tropical disease with limitations for its diagnosis, including low concentration of antibodies in the serum of asymptomatic patients and cross-reactions. In this context, this work proposes an electrochemical immunosensor for the diagnosis of visceral leishmaniasis in a more sensitive way that is capable of avoiding cross-reaction with Chagas disease (CD). Crude Leishmania infantum antigens tested in the enzyme-linked immunosorbent assay (ELISA) were methodologically standardized to best engage to the sensor. The antibodies anti-Trypanosoma cruzi and anti-Leishmania sp. Present in serum from patients with diverse types of CD or leishmaniasis were chosen. A screen-printed carbon electrode modified with gold nanoparticles was the best platform to guarantee effective adsorption of all antigens so that the epitope of specific recognition for leishmaniasis occurred efficiently and without cross-reaction with the evaluated CD. The current peaks reduced linearly after the recognition, and still were able to notice the discrimination between different kinds of diseases (digestive, cardiac, undetermined Chagas/acute and visceral chronic leishmaniasis). Comparative analyses with ELISA were performed with the same groups, and a low specificity (44%) was verified due to cross-reactions (high number of false positives) on ELISA tests, while the proposed immunosensor presented high selectivity and specificity (100%) without any false positives or false negatives for the serum samples from isolated patients with different types of CD and visceral leishmaniasis. Furthermore, the biosensor was stable for 5 days and presented a detection limit of 200 ng mL−1.

Publisher

MDPI AG

Subject

Clinical Biochemistry,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3