Tidal Flats Morphodynamics: A new Conceptual Model to Predict Their Evolution over a Medium-Long Period

Author:

Petti Marco,Pascolo Sara,Bosa SilviaORCID,Bezzi Annelore,Fontolan GiorgioORCID

Abstract

The morphological evolution of tidal flats has been widely investigated in recent years as it represents a very important topic which is highly related to the climate-driven environmental changes. The period over which geomorphological changes can be noted is a multi-year up to pluri-decennial time scale, defined as medium-long period. This work presents a new conceptual model which is able to predict and estimate a limit depth between an erosion condition and a no-erosion condition for tidal flats. The domains of applicability are shallow and confined basins, where tidal flats are characterized by near-horizontal topography, as occurs inside lagoons. The theoretical approach provides a general equation which relates the limit depth of tidal flats to current velocity and critical erosion shear stress. The procedure, followed through to its development, takes into account the important role of the bottom friction dissipation in wind wave generation process for shallow water. The relationship between tidal flat depth, current velocity and critical shear stress is provided in three different configurations, depending on the direction of the wave motion compared to the current. The limit depth compared to the measured depth can suggest if tidal flats tend or not towards an erosion state over a medium-long period. In this sense, the conceptual model provides a relevant contribution to the comprehension of morphodynamics of these important environments. This approach has been validated with its application to a real context and the results are provided in the paper.

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3