The Use of Artificial Intelligence Approaches for Performance Improvement of Low-Cost Integrated Navigation Systems

Author:

de Alteriis Giorgio1ORCID,Ruggiero Davide2ORCID,Del Prete Francesco2,Conte Claudia1ORCID,Caputo Enzo1,Bottino Verdiana1,Carone Fabiani Filippo3,Accardo Domenico1ORCID,Schiano Lo Moriello Rosario1ORCID

Affiliation:

1. Department of Industrial Engineering, University of Naples Federico II, Piazzale Tecchio 80, 80125 Naples, Italy

2. STMicroelectronics, Analog, MEMS and Sensor Group R&D, 80022 Arzano, Italy

3. Department of Economics, Management and Statistics, University Milano-Bicocca, 20126 Milano, Italy

Abstract

In this paper, the authors investigate the possibility of applying artificial intelligence algorithms to the outputs of a low-cost Kalman filter-based navigation solution in order to achieve performance similar to that of high-end MEMS inertial sensors. To further improve the results of the prototype and simultaneously lighten filter requirements, different AI models are compared in this paper to determine their performance in terms of complexity and accuracy. By overcoming some known limitations (e.g., sensitivity on the dimension of input data from inertial sensors) and starting from Kalman filter applications (whose raw noise parameter estimates were obtained from a simple analysis of sensor specifications), such a solution presents an intermediate behavior compared to the current state of the art. It allows the exploitation of the power of AI models. Different Neural Network models have been taken into account and compared in terms of measurement accuracy and a number of model parameters; in particular, Dense, 1-Dimension Convolutional, and Long Short Term Memory Neural networks. As can be excepted, the higher the NN complexity, the higher the measurement accuracy; the models’ performance has been assessed by means of the root-mean-square error (RMSE) between the target and predicted values of all the navigation parameters.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. From Mechanical to Complex System Modeling and Design;Springer Aerospace Technology;2024

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3