Strategies for Developing Functional Secretory Epithelia from Porcine Salivary Gland Explant Outgrowth Culture Models

Author:

Urkasemsin ,Castillo ,Rungarunlert ,Klincumhom ,Ferreira

Abstract

Research efforts have been made to develop human salivary gland (SG) secretory epithelia for transplantation in patients with SG hypofunction and dry mouth (xerostomia). However, the limited availability of human biopsies hinders the generation of sufficient cell numbers for epithelia formation and regeneration. Porcine SG have several similarities to their human counterparts, hence could replace human cells in SG modelling studies in vitro. Our study aims to establish porcine SG explant outgrowth models to generate functional secretory epithelia for regeneration purposes to rescue hyposalivation. Cells were isolated and expanded from porcine submandibular and parotid gland explants. Flow cytometry, immunocytochemistry, and gene arrays were performed to assess proliferation, standard mesenchymal stem cell, and putative SG epithelial stem/progenitor cell markers. Epithelial differentiation was induced and different SG-specific markers investigated. Functional assays upon neurostimulation determined α-amylase activity, trans-epithelial electrical resistance, and calcium influx. Primary cells exhibited SG epithelial progenitors and proliferation markers. After differentiation, SG markers were abundantly expressed resembling epithelial lineages (E-cadherin, Krt5, Krt14), and myoepithelial (α-smooth muscle actin) and neuronal (β3-tubulin, Chrm3) compartments. Differentiated cells from submandibular gland explant models displayed significantly greater proliferation, number of epithelial progenitors, amylase activity, and epithelial barrier function when compared to parotid gland models. Intracellular calcium was mobilized upon cholinergic and adrenergic neurostimulation. In summary, this study highlights new strategies to develop secretory epithelia from porcine SG explants, suitable for future proof-of-concept SG regeneration studies, as well as for testing novel muscarinic agonists and other biomolecules for dry mouth.

Funder

Chulalongkorn University

National Medical Research Council

Publisher

MDPI AG

Subject

Molecular Biology,Biochemistry

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3