New Analytical Approaches for Effective Quantification and Identification of Nanoplastics in Environmental Samples

Author:

Enyoh Christian EbereORCID,Wang QingyueORCID,Chowdhury Tanzin,Wang WeiqianORCID,Lu SenlinORCID,Xiao KaiORCID,Chowdhury Md. Akhter Hossain

Abstract

Nanoplastics (NPs) are a rapidly developing subject that is relevant in environmental and food research, as well as in human toxicity, among other fields. NPs have recently been recognized as one of the least studied types of marine litter, but potentially one of the most hazardous. Several studies are now being reported on NPs in the environment including surface water and coast, snow, soil and in personal care products. However, the extent of contamination remains largely unknown due to fundamental challenges associated with isolation and analysis, and therefore, a methodological gap exists. This article summarizes the progress in environmental NPs analysis and makes a critical assessment of whether methods from nanoparticles analysis could be adopted to bridge the methodological gap. This review discussed the sample preparation and preconcentration protocol for NPs analysis and also examines the most appropriate approaches available at the moment, ranging from physical to chemical. This study also discusses the difficulties associated with improving existing methods and developing new ones. Although microscopical techniques are one of the most often used ways for imaging and thus quantification, they have the drawback of producing partial findings as they can be easily mixed up as biomolecules. At the moment, the combination of chemical analysis (i.e., spectroscopy) and newly developed alternative methods overcomes this limitation. In general, multiple analytical methods used in combination are likely to be needed to correctly detect and fully quantify NPs in environmental samples.

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3