Abstract
Condition monitoring (CM) in the energy industry is limited by the lack of pre-classified data about the normal and/or abnormal plant states and the continuous evolution of its operational conditions. The objective is to develop a CM model able to: (1) Detect abnormal conditions and classify the type of anomaly; (2) recognize novel plant behaviors; (3) select representative examples of the novel classes for labeling by an expert; (4) automatically update the CM model. A CM model based on the never-ending learning paradigm is developed. It develops a dictionary containing labeled prototypical subsequences of signal values representing normal conditions and anomalies, which is continuously updated by using a dendrogram to identify groups of similar subsequences of novel classes and to select those subsequences to be labelled by an expert. A 1-nearest neighbor classifier is trained to online detect abnormal conditions and classify their types. The proposed CM model is applied to a synthetic case study and a real case study concerning the monitoring of the tank pressure of an aero derivative gas turbine lube oil system. The CM model provides satisfactory performances in terms of classification accuracy, while remarkably reducing the expert efforts for data labeling and model (periodic) updating.
Subject
Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献