Anti-Fatigue Glasses Based on Microprisms for Preventing Eyestrain

Author:

Le ZichunORCID,Antonov Evhen,Mao Qiang,Petrov Viacheslav,Wang Yuhui,Wang Wei,Shevkolenko Marina,Dong Wen

Abstract

Although microprisms have become an important medical means of strabismus treatment, related research concerning the design, fabrication, and testing of microprismatic glasses for preventing eyestrain has rarely been reported. In this study, the structure of microprismatic glasses for preventing eyestrain related to using electronic monitors, including computers and mobile phones, is introduced. A designing theory of anti-fatigue glasses with microprisms is developed. The fabrication technique and the process are described, and the performances of the fabricated microprisms are characterized. Finally, a compact testing system for the measurement of prismatic diopter is designed and constructed. This measuring system can be used not only for Fresnel microprisms, but also for other types of prisms. The measured results agree with our calculations. Although this study is focused on optimizing the objective prismatic diopter for anti-fatigue microprismatic glasses, 2.0–3.0 prismatic diopters (Δ) for each eye in the anti-fatigue glasses are suggested according to our experience on strabismus treatments. The clinical research for patients using the developed anti-fatigue glasses will be fully implemented in our further research to confirm the optimal subjective prismatic value.

Funder

enterprise entrusted project

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Reference24 articles.

1. Optical correction of refractive error for preventing and treating eye symptoms in computer users;Cochrane Database Syst. Rev.,2018

2. Management of digital eye strain;Clin. Exp. Optom.,2018

3. Computer vision syndrome: Darkness under the shadow of light;Can. Assoc. Radiol. J.,2019

4. The optics of occupational progressive lenses;Optometry,2005

5. Mechanisms of blue light-induced eye hazard and protective measures: A review;Biomed. Pharm.,2020

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3