Abstract
Defective PV panels reduce the efficiency of the whole PV string, causing loss of investment by decreasing its efficiency and lifetime. In this study, firstly, an isolated convolution neural model (ICNM) was prepared from scratch to classify the infrared images of PV panels based on their health, i.e., healthy, hotspot, and faulty. The ICNM occupies the least memory, and it also has the simplest architecture, lowest execution time, and an accuracy of 96% compared to transfer learned pre-trained ShuffleNet, GoogleNet, and SqueezeNet models. Afterward, ICNM, based on its advantages, is reused through transfer learning to classify the defects of PV panels into five classes, i.e., bird drop, single, patchwork, horizontally aligned string, and block with 97.62% testing accuracy. This proposed approach can identify and classify the PV panels based on their health and defects faster with high accuracy and occupies the least amount of the system’s memory, resulting in savings in the PV investment.
Subject
Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry
Cited by
36 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献