Photovoltaic Panels Classification Using Isolated and Transfer Learned Deep Neural Models Using Infrared Thermographic Images

Author:

Ahmed WaqasORCID,Hanif Aamir,Kallu Karam Dad,Kouzani Abbas Z.ORCID,Ali Muhammad UmairORCID,Zafar AmadORCID

Abstract

Defective PV panels reduce the efficiency of the whole PV string, causing loss of investment by decreasing its efficiency and lifetime. In this study, firstly, an isolated convolution neural model (ICNM) was prepared from scratch to classify the infrared images of PV panels based on their health, i.e., healthy, hotspot, and faulty. The ICNM occupies the least memory, and it also has the simplest architecture, lowest execution time, and an accuracy of 96% compared to transfer learned pre-trained ShuffleNet, GoogleNet, and SqueezeNet models. Afterward, ICNM, based on its advantages, is reused through transfer learning to classify the defects of PV panels into five classes, i.e., bird drop, single, patchwork, horizontally aligned string, and block with 97.62% testing accuracy. This proposed approach can identify and classify the PV panels based on their health and defects faster with high accuracy and occupies the least amount of the system’s memory, resulting in savings in the PV investment.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 36 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3