IoT Sensor Networks in Smart Buildings: A Performance Assessment Using Queuing Models

Author:

Santos Brena,Soares AndréORCID,Nguyen Tuan-AnhORCID,Min Dug-Ki,Lee Jae-WooORCID,Silva Francisco-AirtonORCID

Abstract

Smart buildings in big cities are now equipped with an internet of things (IoT) infrastructure to constantly monitor different aspects of people’s daily lives via IoT devices and sensor networks. The malfunction and low quality of service (QoS) of such devices and networks can severely cause property damage and perhaps loss of life. Therefore, it is important to quantify different metrics related to the operational performance of the systems that make up such computational architecture even in advance of the building construction. Previous studies used analytical models considering different aspects to assess the performance of building monitoring systems. However, some critical points are still missing in the literature, such as (i) analyzing the capacity of computational resources adequate to the data demand, (ii) representing the number of cores per machine, and (iii) the clustering of sensors by location. This work proposes a queuing network based message exchange architecture to evaluate the performance of an intelligent building infrastructure associated with multiple processing layers: edge and fog. We consider an architecture of a building that has several floors and several rooms in each of them, where all rooms are equipped with sensors and an edge device. A comprehensive sensitivity analysis of the model was performed using the Design of Experiments (DoE) method to identify bottlenecks in the proposal. A series of case studies were conducted based on the DoE results. The DoE results allowed us to conclude, for example, that the number of cores can have more impact on the response time than the number of nodes. Simulations of scenarios defined through DoE allow observing the behavior of the following metrics: average response time, resource utilization rate, flow rate, discard rate, and the number of messages in the system. Three scenarios were explored: (i) scenario A (varying the number of cores), (ii) scenario B (varying the number of fog nodes), and (iii) scenario C (varying the nodes and cores simultaneously). Depending on the number of resources (nodes or cores), the system can become so overloaded that no new requests are supported. The queuing network based message exchange architecture and the analyses carried out can help system designers optimize their computational architectures before building construction.

Funder

the National Council for Scientific and Technological Development---CNPq, Brazil, through the Universal call for tenders

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Reference49 articles.

1. Internet of things: Survey on security

2. Modeling and analyzing cascading failures for Internet of Things

3. Culminate Coverage for Sensor Network through Bodacious-Instance Mechanism;Ashraf,2020

4. Number of internet of things (IoT) connected devices worldwide in 2018, 2025 and 2030 (in billions);Analytics;Gartner,2020

5. Towards internet of things: Survey and future vision;Said;Int. J. Comput. Netw.,2013

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3