Microplastics Prevalence in Different Cetaceans Stranded along the Western Taiwan Strait

Author:

Aierken Reyilamu123,Zhang Yuke123,Zeng Qianhui123ORCID,Yong Liming123,Qu Jincheng123,Tong Haoran4,Wang Xianyan123,Zhao Liyuan123

Affiliation:

1. Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China

2. Key Laboratory of Marine Ecological Conservation and Restoration, Ministry of Natural Resources, Xiamen 361005, China

3. Fujian Provincial Key Laboratory of Marine Ecological Conservation and Restoration, Xiamen 361005, China

4. Museum of Biology, Xiamen University, Xiamen 361005, China

Abstract

Microplastics (MPs) pollution is of global concern, which poses serious threats to various marine organisms, including many threatened apex predators. In this study, MPs were investigated from nine cetaceans of four different species, comprising one common dolphin (Delphinus delphis), two pygmy sperm whales (Kogia breviceps), one ginkgo-toothed beaked whale (Mesoplodon ginkgodens), and five Indo-Pacific humpback dolphins (Sousa chinensis) stranded along the western coast of the Taiwan Strait from the East China Sea based on Fourier transform infrared (FTIR) spectroscopy analysis. Mean abundances of 778 identified MPs items were 86.44 ± 12.22 items individual−1 and 0.43 ± 0.19 items g−1 wet weight of intestine contents, which were found predominantly to be transparent, fiber-shaped polyethylene terephthalate (PET) items usually between 0.5 and 5 mm. The abundance of MPs was found at a slightly higher level and significantly correlated with intestine contents mass (p = 0.0004*). The MPs source was mainly likely from synthetic fibers-laden sewage discharged from intense textile industries. Our report represents the first study of MPs in pelagic and deep-diving cetaceans in China, which not only adds baseline data on MPs for cetaceans in Asian waters but also highlights the further risk assessment of MPs consumption in these threatened species.

Funder

Fujian Provincial Natural Science Foundation

National Natural Science Foundation of China

National Key R & D Program of China

Fundamental Research Funds for Ministry of Natural Resources

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3