A Laboratory-Based Multidisciplinary Approach for Effective Education and Training in Industrial Collaborative Robotics

Author:

Antunes Rodrigo12ORCID,Nunes Luís1,Aguiar Martim Lima de12,Gaspar Pedro Dinis12ORCID

Affiliation:

1. Department of Electromechanical Engineering, University of Beira Interior, Rua Marquês d’Ávila e Bolama, 6201-001 Covilhã, Portugal

2. C-MAST—Centre for Mechanical and Aerospace Science and Technologies, 6201-001 Covilhã, Portugal

Abstract

The rapid evolution of robotics across various sectors, including healthcare, manufacturing, and domestic applications, has underscored a significant workforce skills gap. The shortage of qualified professionals in the labor market has had adverse effects on production capacities. Therefore, the significance of education and training for cultivating a skilled workforce cannot be overstated. This research work presents the development of a pedagogical approach centered on laboratory infrastructure designed specifically with multidisciplinary technologies and strategic human–machine interaction protocols to enhance learning in industrial robotics courses. Progressive competencies in laboratory protocols are developed, focusing on programming and simulating real-world industrial robotics tasks, to bridge the gap between theoretical education and practical industrial applications for higher education students. The proposed infrastructure includes a user-configurable maze comprising different colored elements, defining starting points, endpoints, obstacles, and varying track sections. These elements foster a dynamic and unpredictable learning environment. The infrastructure is fabricated using Computer Numerical Control (CNC) machining and 3D printing techniques. A collaborative robot, the Universal Robots UR3e, is used to navigate the maze and solve the track with advanced computer vision and human–machine communication. The amalgamation of practical experience and collaborative robotics furnishes students with hands-on experience, equipping them with the requisite skills for effective programming and manipulation of robotic devices. Empowering human–machine interaction and human–robot collaboration assists in addressing the industry’s demand for skilled labor in operating collaborative robotic manipulators.

Funder

European Commission through the INTERREG SUDOE program

Fundação para a Ciência e Tecnologia (FCT) and C-MAST

Publisher

MDPI AG

Reference16 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3