Glucose Starvation Inhibits Ferroptosis by Activating the LKB1/AMPK Signaling Pathway and Promotes the High Speed Linear Motility of Dairy Goat Sperm

Author:

Li Yu1,Zhang Guangzhi1,Wen Fei1,Xian Ming1,Guo Songmao1,Zhang Xing1,Feng Xianzhou1,Hu Zhangtao1,Hu Jianhong1

Affiliation:

1. Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China

Abstract

In mammals, sperm acquire fertilization ability after capacitation in vitro or when in the female reproductive tract. The motility patterns of sperm undergo continuous changes from the moment of ejaculation until fertilization in the female reproductive tract. In vitro, hyperactivated motility can be induced through high glucose mediums, while in vivo, it is induced by oviduct fluids. Conversely, sperm maintain linear motility in seminal plasma or uterine fluids that contain low glucose levels. In dairy goat sperm, energy metabolism associated with capacitation depends on the energy sources in vitro, seminal plasma, or the female reproductive tract, especially the glucose levels. However, there is little experimental knowledge that glucose levels affect sperm energy metabolism in dairy goats. To clarify these hypotheses, we incubated dairy goat spermatozoa with different concentrations of rotenone-glucose (ROT), carbonyl cyanide 4-(trifluoromethoxy) phenylhydrazone (FCCP), and tigecycline (TIG) in vitro. Sperm motility attributes, ATP content, pyruvate and lactate levels, mitochondrial permeability transition pore fluorescence intensity, mitochondrial membrane potential (MMP), and protein synthesis were analyzed. Sperm motility patterns changed from circular to linear under low glucose conditions compared with those in high glucose conditions and showed a significant improvement in progressive motility and straight line speed, whereas lactate and pyruvate levels and MMP decreased remarkably. Incubation of spermatozoa with ROT, FCCP, and TIG inhibited sperm mitochondrial activity, protein synthesis, oxidative phosphorylation, and ATP levels, thereby reducing sperm motility, including the progressive motility, straight line speed, and total motility. Simultaneously, incubation of spermatozoa with Compound C under low glucose conditions significantly decreased the ATP levels and MMP, as well as liver kinase B1 and AMPK protein expression. Under low glucose conditions, sperm mainly produce ATP through mitochondrial OXPHOS to achieve high speed linear movement, inhibit ferroptosis through the LKB1/AMPK signaling pathway, and further maintain energy metabolism homeostasis.

Funder

Shaanxi Province Technology Innovation Guide Project

Fuping City Open Competition Project

Publisher

MDPI AG

Subject

General Veterinary,Animal Science and Zoology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3