Effects of a High-Concentrate Diet on the Blood Parameters and Liver Transcriptome of Goats

Author:

Wang Yusu1ORCID,Li Qiong1,Wang Lizhi1ORCID,Liu Yuehui1,Yan Tianhai2

Affiliation:

1. Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, China

2. Livestock Production Sciences Branch, Agri-Food and Biosciences Institute, Large Park, Hillsborough BT26 6DR, UK

Abstract

The objective of this study was to determine the effect of high-concentrate diets on the blood parameters and liver transcriptome of goats. Eighteen goats were allocated into three dietary treatments: the high level of concentrate (HC) group, the medium level of concentrate (MC) group, and the low level of concentrate (LC) group. The blood parameters and pathological damage of the gastrointestinal tract and liver tissues were measured. In hepatic portal vein blood, HC showed higher LPS, VFAs, and LA; in jugular vein blood, no significant differences in LPS, VFAs, and LA were recorded among groups (p > 0.05). Compared to the LC and MC groups, the HC group showed significantly increased interleukin (IL)-1β, IL-10, TNF-α, and diamine oxidase in jugular vein blood (p < 0.05). Liver transcriptome analysis discovered a total of 1269 differentially expressed genes (DEGs) among the three groups and most of them came from the HC vs. LC group. There were 333 DEGs up-regulated and 608 down-regulated in the HC group compared to the LC group. The gene ontology enrichment analysis showed that these DEGs were mainly focused on the regulation of triacylglycerol catabolism, lipoprotein particle remodeling, and cholesterol transport. The Kyoto Encyclopedia of Genes and Genomes pathway analysis revealed that the liver of the HC group enhanced the metabolism of nutrients such as VFAs through the activation of AMPK and other signaling pathways and enhanced the clearance and detoxification of LPS by activating the toll-like receptor signaling pathway. A high-concentrate diet (HCD) can significantly promote the digestion of nutrients; the liver enhances the adaptability of goats to an HCD by regulating the expression of genes involved in nutrient metabolism and toxin clearance.

Funder

Science and Technology Department of Sichuan Province

Sichuan Beef Cattle Innovation Group

Publisher

MDPI AG

Subject

General Veterinary,Animal Science and Zoology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3