Fracture Resistance of Monolithic Zirconia Crowns on Four Occlusal Convergent Abutments in Implant Prosthesis

Author:

Lan Ting-HsunORCID,Pan Chin-Yun,Liu Pao-HsinORCID,Chou Mitch M.C.

Abstract

Adjusting implant abutment for crown delivery is a common practice during implant installation. The purpose of this study was to compare the fracture resistance and stress distribution of zirconia specimens on four occlusal surface areas of implant abutment. Four implant abutment designs [occlusal surface area (SA) SA100, SA75, SA50, and SA25] with 15 zirconia prostheses over the molar area per group were prepared for cyclic loading with 5 Hz, 300 N in a servo-hydraulic testing machine until fracture or automatic stoppage after 30,000 counts. The minimum occlusal thickness of all specimens was 0.5 mm. Four finite element models were simulated under vertical or oblique 10-degree loading to analyze the stress distribution and peak value of zirconia specimens. Data were statistically analyzed, and fracture patterns were observed under a scanning electron microscope. Cyclic loading tests revealed that specimen breakage had moderately strong correlation with the abutment occlusal area (r = 0.475). Specimen breakage differed significantly among the four groups (P = 0.001). The lowest von Mises stress value was measured for prosthesis with a smallest abutment occlusal surface area (SA25) and the thickest zirconia crown. Thicker zirconia specimens (SA25) had higher fracture resistance and lowest stress values under 300 N loading.

Funder

NSYSU-KMU JOINT RESEARCH PROJECT (NSYSUKMUPO14)

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3