Quantitative Detection of Clogging in Horizontal Subsurface Flow Constructed Wetland Using the Resistivity Method

Author:

Liu Huaqing,Hu Zhen,Song Shiying,Zhang Jian,Nie Lichao,Hu Hongying,Li Fengmin,Liu Zhengyu

Abstract

Substrate clogging seriously affects the lifetime and treatment performance of subsurface flow constructed wetlands (SSF CWs), and the quantitative detection of clogging is the key challenge in the management of substrate clogging. This paper explores the feasibility of the resistivity method to detect the clogging degree of an SSF CW. The clogged substrate was found to have a high water-holding capacity, which led to low apparent resistivity in the draining phase. On the basis of the resistivity characteristics, clogging quantification was performed with a standard laboratory procedure, i.e., the Wenner method used in a Miller Soil Box. The apparent resistivity to sediment fraction (v/v) (ARSF) model was established to evaluate the degree of clogging from the apparent resistivity. The results showed that the ARSF model fit well with the actual values (linear slope = 0.986; R-squared = 0.98). The methods for in situ resistivity detection were applied in a lab-scale horizontal subsurface flow constructed wetland (HSSF CW). Combined with the ARSF model, the two-probe method demonstrated high accuracy for clogging quantification (relative error less than 9%). These results suggest that the resistivity method is a reliable and feasible technique for in situ detection of clogging in SSF CWs.

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3