Classifying the Level of Bid Price Volatility Based on Machine Learning with Parameters from Bid Documents as Risk Factors

Author:

Jang YeEun,Son JeongWookORCID,Yi June-Seong

Abstract

The purpose of this study is to classify the bid price volatility level with machine learning and parameters from bid documents as risk factors. To this end, we studied project-oriented risk factors affecting the bid price and pre-bid clarification document as the uncertainty of bid documents through preliminary research. The authors collected Caltrans’s bid summary and pre-bid clarification document from 2011–2018 as data samples. To train the classification model, the data were preprocessed to create a final dataset of 269 projects consisting of input and output parameters. The projects in which the bid inquiries were not resolved in the pre-bid clarification had higher bid averages and bid ranges than the risk-resolved projects. Besides this, regarding the two classification models with neural network (NN) algorithms, Model 2, which included the uncertainty in the bid documents as a parameter, predicted the bid average risk and bid range risk more accurately (52.5% and 72.5%, respectively) than Model 1 (26.4% and 23.3%, respectively). The accuracy of Model 2 was verified with 40 verification test datasets.

Funder

Korea Agency for Infrastructure Technology Advancement

Ewha Womans University

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

Reference44 articles.

1. New Approach to Improve General Contractor Crew’s Work Continuity in Repetitive Construction Projects

2. A Survey on Integration of Optimization and Project Management Tools for Sustainable Construction Scheduling

3. Definiowanie zrównoważonego budownictwa. Cz. 2;Czarnecki;Mater. Bud.,2010

4. Better Practices of Project Management based on IPMA competences;Hermarij,2013

5. Global Construction Survey 2015,2015

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3