Molecular Dynamics Simulation of Nanoscale Elastic Properties of Hydrated Na-, Cs-, and Ca-Montmorillonite

Author:

Kuang Lianfei,Zhu QiyinORCID,Shang Xiangyu,Zhao Xiaodong

Abstract

The knowledge of nanoscale mechanical properties of montmorillonite (MMT) with various compensation cations upon hydration is essential for many environmental engineering-related applications. This paper uses a Molecular Dynamics (MD) method to simulate nanoscale elastic properties of hydrated Na-, Cs-, and Ca-MMT with unconstrained system atoms. The variation of basal spacing of MMT shows step characteristics in the initial crystalline swelling stage followed by an approximately linear change in the subsequent osmotic swelling stage as the increasing of interlayer water content. The water content of MMT in the thermodynamic stable-state conditions during hydration is determined by comparing the immersion energy and hydration energy. Under this stable hydration state, the nanoscale elastic properties are further simulated by the constant strain method. Since the non-bonding strength between MMT lamellae is much lower than the boning strength within the mineral structure, the in-plane and out-of-plane strength of MMT has strong anisotropy. Simulated results including the stiffness tensor and linear elastic constants based on the assumption of orthotropic symmetry are all in good agreement with results from the literature. Furthermore, the out-of-plane stiffness tensor components of C33, C44, and C55 all fluctuate with the increase of interlayer water content, which is related to the formation of interlayer H-bonds and atom-free volume ratio. The in-plane stiffness tensor components C11, C22, and C12 decrease nonlinearly with the increase of water content, and these components are mainly controlled by the bonding strength of mineral atoms and the geometry of the hydrated MMT system. Young’s modulus in all three directions exhibits a nonlinear decrease with increasing water content.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3