Understanding Query Combination Behavior in Exploratory Searches

Author:

Li PengfeiORCID,Zhang Yin,Zhang Bin

Abstract

In exploratory search, users sometimes combine two or more issued queries into new queries. We present such a kind of search behavior as query combination behavior. We find that the queries after combination usually can better meet users’ information needs. We also observe that users combine queries for different motivations, which leads to different types of query combination behaviors. Previous work on understanding user exploratory search behaviors has focused on how people reformulate queries, but not on how and why they combine queries. Being able to answer these questions is important for exploring how users search and learn during information retrieval processes and further developing support to assist searchers. In this paper, we first describe a two-layer hierarchical structure for understanding the space of query combination behavior types. We manually classify query combination behavior sessions from AOL and Sogou search engines and explain the relationship from combining queries to success. We then characterize some key aspects of this behavior and propose a classifier that can automatically classify types of query combination behavior using behavioral features. Finally, we summarize our findings and show how search engines can better assist searchers.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Reducing the user labeling effort in effective high recall tasks by fine-tuning active learning;Journal of Intelligent Information Systems;2023-01-19

2. Algorithms, Users;Synthesis Lectures on Information Concepts, Retrieval, and Services;2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3