Abstract
This paper proposes a lens design method for effectively collimating the light emitting from a light-emitting diode (LED). This collimating lens contains two aspherical lens surfaces which can be mathematically characterized using a few designing parameters, and hence is called an analytic collimating lens. An optical ray-tracing algorithm has been developed for these analytic collimating lenses to analyze their optical performance and to optimize their designs. Six high-power and commercially available ultraviolet (UV) LEDs are chosen as examples for demonstrating the optimal collimating lens design. For each UV-LED, the corresponding optical collimating lens is determined by inputting the ray data file provided by the manufacture over a finite-size emitting area. The divergent angles of the six UV-LEDs have been successfully collimated to a narrow range in between 1.56° to 2.84° from their original radiation angle around 46° to 120°. Furthermore, the proposed analytical collimating lenses are suitable for mass-production using standard mold injection methods, and hence possess great potentials for industry applications of LEDs.
Funder
Ministry of Science and Technology
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献