Large Deformation Characteristics of Surrounding Rock and Support Technology of Shallow-Buried Soft Rock Roadway: A Case Study

Author:

Zhu Liu,Yao QianglingORCID,Xu Qiang,Yu Liqiang,Qu Qundi

Abstract

The coal resources in the coal-rich area of western China are mostly located in the late diagenetic Cretaceous and Jurassic strata. In this paper, a study on the support of soft rock roadways was carried out in the background of the soft rock track roadway in the Jiebangou coal mine. The field investigation showed that the surrounding rocks of the roadway were weak, soft, and broken, and the surrounding rocks were cemented, with the roadway local deformation exceeding 1 m. The borehole television results showed that the surrounding rocks were mainly weak sandy mudstone and yellow mudstone. The average uniaxial compressive strength of the surrounding rock was 15.49 MPa. The roadway is a shallow buried soft rock roadway; site investigation revealed that the original U-shaped steel shed had an extremely low resistance to slip, the filling body behind the U-shaped steel shed fell off, the interaction between the U-shaped steel shed and the surrounding rock was poor, the U-shaped steel shed could not provide sufficient timely support resistance, and the bearing capacity of the U-shaped steel shed was far from consideration. The floor was not effectively supported. The floor had different degrees of the bottom drum, and frequent undercover caused new stress disturbances, which loosened the bottom corners of both rock types and made the shed legs move continuously inward, reducing the bearing capacity and actual support resistance of the bracket. Numerical calculations were performed to study the deformation characteristics of the surrounding rock of the tunnel and the yielding damage characteristics of the brace. The results showed that the current U-shack support strength was insufficient, the two sides were deformed by 950 mm, the bottom of the roadway bulged by 540 mm, and the surrounding rock was mainly shear damaged. The fall of the filler behind the shed caused damage to the U-shaped steel shed spire. Through site investigation results and numerical calculations, the deformation and damage characteristics of the soft rock roadway and its damage causes were analyzed, and the support technology system of ‘strengthening support for weak structural parts’ was proposed. This improved the mechanical properties of the weak structural support body, the stress state of the local surrounding rock, and the bearing capacity of the support structure, and effectively controlled the deformation, damage, and instability of the surrounding rock of the roadway, and deformation, damage, and destabilization of the roadway, thereby achieving overall stability for the surrounding rock of the roadway.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3