Hydrogen Energy Demand Growth Prediction and Assessment (2021–2050) Using a System Thinking and System Dynamics Approach

Author:

Yusaf TalalORCID,Laimon Mohamd,Alrefae Waleed,Kadirgama Kumaran,Dhahad Hayder A.ORCID,Ramasamy DevarajanORCID,Kamarulzaman Mohd KamalORCID,Yousif BelalORCID

Abstract

Adoption of hydrogen energy as an alternative to fossil fuels could be a major step towards decarbonising and fulfilling the needs of the energy sector. Hydrogen can be an ideal alternative for many fields compared with other alternatives. However, there are many potential environmental challenges that are not limited to production and distribution systems, but they also focus on how hydrogen is used through fuel cells and combustion pathways. The use of hydrogen has received little attention in research and policy, which may explain the widely claimed belief that nothing but water is released as a by-product when hydrogen energy is used. We adopt systems thinking and system dynamics approaches to construct a conceptual model for hydrogen energy, with a special focus on the pathways of hydrogen use, to assess the potential unintended consequences, and possible interventions; to highlight the possible growth of hydrogen energy by 2050. The results indicate that the combustion pathway may increase the risk of the adoption of hydrogen as a combustion fuel, as it produces NOx, which is a key air pollutant that causes environmental deterioration, which may limit the application of a combustion pathway if no intervention is made. The results indicate that the potential range of global hydrogen demand is rising, ranging from 73 to 158 Mt in 2030, 73 to 300 Mt in 2040, and 73 to 568 Mt in 2050, depending on the scenario presented.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3