The Dependence of Ultrasonic Velocity in Ultra-Low Expansion Glass on Temperature

Author:

Wei WenqingORCID,Zhang Yongfeng,Du Zongzheng,Song Minwei,Zhang Yuanyuan,Liu Hong

Abstract

The coefficient of thermal expansion (CTE) is an important property of ultra-low expansion (ULE) glass, and the ultrasonic velocity method has shown excellent performance for the nondestructive measurement of CTE in large ULE glass. In this method, the accurate acquisition of the ultrasonic velocity in ULE glass is necessary. Herein, we present a correlation method to determine the ultrasonic TOF in ULE glass and to further obtain the ultrasonic longitudinal wave velocity (cL) indirectly. The performance of this method was verified by simulations. Considering the dependence of cL on temperature (T), we carried out the derivation of the analytical model between cL and T. Based on reasonable constant assumptions in the physical sense, a cL–T exponential model was produced, and some experimental results support this model. Additional experiments were carried out to validate the accuracy of the cL–T exponential model. The studies we conducted indicate that the cL–T exponential model can reliably predict the ultrasonic velocity in ULE glass at different temperatures, providing a means for the nondestructive CTE measurement of large ULE glass at a specified temperature.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference26 articles.

1. Precision Thermal Expansion Measurements on Low Expansion Optical Materials

2. Measurement of thermal expansivity of low-expansion glasses by interferometric methods: Results of an interlaboratory comparison

3. Measurement of thermal expansion of low-expansion glasses by a laser interferometric thermal expansion meter;Kato;High Temp.-High Press.,1991

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3