Abstract
Hybrid renewable energy systems are subject to extensive research around the world and different designs have found their way to the market and have been commercialized. These systems usually employ multiple components, both renewable and conventional, combined in a way to increase the system’s overall efficiency and resilience and to lower GHG emissions. In this paper, a hybrid renewable energy system was designed for residential use and its annual energy performance was investigated and optimized. The multi-module hybrid system consists of a Ground-Air Heat Exchanger (GAHX), Photovoltaic Thermal (PVT) panels and Air to Water Heat Pump (AWHP). The developed system’s annual performance was simulated in the TRaNsient SYStem (TRNSYS) environment and optimized using the General Algebraic Modelling System (GAMS) platform. Multi-objective non-linear optimization algorithms were developed and applied to define optimal system design and performance parameters while reducing cost and GHG emissions. The results revealed that the designed system was able to satisfy building thermal heating/cooling loads throughout the year. The ground source heat exchanger contributed 21.3% and 26.3% of the energy during heating and cooling seasons, respectively. The initial design was optimized in terms of key performance parameters and module sizes. The annual simulation analysis showed that the system was able to self-generate and meet nearly 29.4% of the total HVAC electricity needs, with the rest being supplied by the grid. The annual system module performance efficiencies were 13.4% for the PVT electric and 5.5% for the PVT thermal, with an AWHP COP of 4.0.
Funder
Korea Institute of Energy Technology, Korean Energy Technology Evaluation and Planning (KETEP) and the Ministry of Trade, Industry and Energy (MOTIE) of the Republic of Korea
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献