Research on the Indoor Thermal Environment of Attached Sunspace Passive Solar Heating System Based on Zero-State Response Control Strategy

Author:

Zhao JingORCID,Liu Dehan,Lu Shilei

Abstract

The application of attached sunspace passive solar heating systems (ASPSHS) for farmhouses can improve building performance, reduce heating energy consumption and carbon dioxide emissions. In order to take better use of the attached sunspace to prevent heat transfer or promote natural ventilation, this paper presented a zero-state response control strategy for the opening and closing time of active interior window in the ASPSHS. In order to verify the application of this strategy, an attached sunspace was built in an actual farmhouse. A natural ventilation heat exchange model was built based on the farmhouse with attached sunspace. The proposed zero-state response control strategy was implemented in TRNSYS software. Field measurement in living lab was carried out to inspect the distribution of the thermal environment in the farmhouse with attached sunspace under a zero-state response control strategy in the cold region of northern China. The experimental results show that, even under −5.0–2.5 °C ambient temperature, the application of zero-state response control strategy effectively increases the internal temperature to an average of 25.45 °C higher than the outside, with 23% indoor discernible temperature differential in the sample daytime. The whole-season heating performance was evaluated by simulating the model for the heating season in 2020–2021. The simulation demonstrates that the ASPSHS under zero-state response control strategy can maintain a basic indoor temperature of 14 °C for 1094 h during the heating season, with a daytime heating guarantee rate of 73.33%, thus ensuring higher indoor heating comfort during the day. When compared to a farmhouse with an attached sunspace under the zero-state response control strategy, the energy savings rate can be enhanced by 20.88%, and carbon emissions can be reduced by 51.73%. Overall, the attached sunspace with the zero-state response control strategy can effectively increase the indoor temperature when the solar radiation is intensive and create a suitable thermal environment for the farmhouse in the cold region of northern China.

Funder

National Key R&D Program of China

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3