Abstract
Communication in industrial wireless networks necessitates reliability and precision. Besides, the existence of interference or traffic in the network must not affect the estimated network properties. Therefore, data packets have to be sent within a certain time frame and over a reliable connection. However, the working scenarios and the characteristics of the network itself make it vulnerable to node or link faults, which impact the transmission reliability and overall performance. This article aims to introduce a developed multipath routing model, which leads to cost-effective planning, low latency and high reliability of industrial wireless mesh networks, such as the WirelessHART networks. The multipath routing model has three primary paths, and each path has a backup node. The backup node stores the data transmitted by the parent node to grant communication continuity when primary nodes fail. The multipath routing model is developed based on optimal network planning and deployment algorithm. Simulations were conducted on a WirelessHART simulator using Network Simulator (NS2). The performance of the developed model is compared with the state-of-the-art. The obtained results reveal a significant reduction in the average network latency, low power consumption, better improvement in expected network lifetime, and enhanced packet delivery ratio which improve network reliability.
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
25 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献