A Large Area Pixelated Silicon Array Detector for Independent Transit In Vivo Dosimetry

Author:

Brace Owen J.,Fuduli Iolanda,Alnaghy Saree,Le Albert T.,Davis Jeremy A.,Causer Trent,Wilkinson DeanORCID,Perevertaylo Aleksandr,Rosenfeld Anatoly B.,Petasecca Marco

Abstract

A large area pixelated silicon array detector named “MP987” has been developed for in vivo dosimetry. The detector was developed to overcome the non-water equivalent response of EPID (Electronic Portal Imaging Device) dosimetry systems, due to the shortfalls of the extensive corrections required. The detector, readout system and software have all been custom designed to be operated independently from the linac with the array secured directly above the EPID, to be used in combination with the 6 MV imaging system. Dosimetry characterisation measurements of percentage depth dose (PDD), dose rate dependence, radiation damage, output factors (OF), profile measurements, linearity and uniformity were performed. Additionally, the first pre-clinical tests with this novel detector of a transit dosimetry characterization and a collapsed IMRT (intensity-modulated radiation therapy) study are presented. Both PDD and OF measurements had a percentage difference of less than 2.5% to the reference detector. A maximum change in sensitivity of 4.3 ± 0.3% was observed after 30 kGy of gamma accumulated dose. Transit dosimetry measurements through a homogeneous Solid Water phantom had a measured dose within error of the TPS calculations, for field sizes between 3 × 3 cm2 and 10 × 10 cm2. A four-fraction collapsed IMRT plan on a lung phantom had absolute dose pass fractions between the MP987 and TPS (treatment planning system) from 94.2% to 97.4%, with a 5%/5 mm criteria. The ability to accurately measure dose at a transit level, without the need for correction factors derived from extensive commissioning data collection procedures, makes the MP987 a viable alternative to the EPID for in vivo dosimetry. This MP987 is this first of its kind to be successfully developed specifically for a dual detector application.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3