Hydrogenated Graphene Based Organic Thin Film Transistor Sensor for Detection of Chloride Ions as Corrosion Precursors

Author:

Chakik Mounia,Bebe Siziwe,Prakash RaviORCID

Abstract

Corrosion monitoring and management has been at the center of structural health monitoring protocols due to its damaging effects on metallic structures. Current corrosion prevention and management programs often fail to include environmental factors such as Cl− ions and surface wetness. Early detection of these environmental factors can prevent the onset of corrosion and reduce repair and maintenance-related expenses. There is growing interest in creating solution-processed thin film environmental sensors with high sensitivity to corrosion precursors, low-cost fabrication, and small footprint, rendering them viable candidates for investigation as potential corrosion sensors that could be easily integrated into existing structures and screen printed or patterned directly into surface coatings. In this work, we have implemented C60-based n-type organic thin film transistors (OTFTs) with functionalized graphene oxide for humidity sensing and functionalized graphene nanoparticles for Cl− ion detection, using low-cost solution processing techniques. The reduced graphene oxide (rGO)-coated OTFT humidity sensor is designed for the qualitative estimation of surface moisture levels and high levels of humidity, and it exhibits a relative responsivity for dry to surface wetness transition of 122.6% to surface wetness, within a response time of 20 ms. We furthermore implemented an in-house synthesized hydrogenated graphene coating in conjunction with a second OTFT architecture for Cl− ions sensing which yielded a sensitivity of 4%/ppm to ultrafine ionic concentrations, over an order of magnitude lower than the range identified to cause corrosion in aircraft structures.

Funder

Natural Sciences and Engineering Research Council

National Research Council Canada

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3