Design and Optimization of a Neuro-Fuzzy System for the Control of an Electromechanical Plant

Author:

Espitia HelbertORCID,Machón IvánORCID,López HilarioORCID

Abstract

One characteristic of neuro-fuzzy systems is the possibility of incorporating preliminary information in their structure as well as being able to establish an initial configuration to carry out the training. In this regard, the strategy to establish the configuration of the fuzzy system is a relevant aspect. This document displays the design and implementation of a neuro-fuzzy controller based on Boolean relations to regulate the angular position in an electromechanical plant, composed by a motor coupled to inertia with friction (a widely studied plant that serves to show the control system design process). The structure of fuzzy systems based on Boolean relations considers the operation of sensors and actuators present in the control system. In this way, the initial configuration of fuzzy controller can be determined. In order to perform the optimization of the neuro-fuzzy controller, the continuous plant model is converted to discrete time to be included in the closed-loop controller training equations. For the design process, first the optimization of a Proportional Integral (PI) linear controller is carried out. Thus, linear controller parameters are employed to establish the structure and initial configuration of the neuro-fuzzy controller. The optimization process also includes weighting factors for error and control action in such a way that allows having different system responses. Considering the structure of the control system, the optimization algorithm (training algorithm) employed is dynamic back propagation. The results via simulations show that optimization is achieved in the linear and neuro-fuzzy controllers using different weighting values for the error signal and control action. It is also observed that the proposed control strategy allows disturbance rejection.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3