Cucumber Leaf Diseases Recognition Using Multi Level Deep Entropy-ELM Feature Selection

Author:

Khan Muhammad AttiqueORCID,Alqahtani Abdullah,Khan Aimal,Alsubai Shtwai,Binbusayyis AdelORCID,Ch M Munawwar Iqbal,Yong Hwan-Seung,Cha Jaehyuk

Abstract

Agriculture has becomes an immense area of research and is ascertained as a key element in the area of computer vision. In the agriculture field, image processing acts as a primary part. Cucumber is an important vegetable and its production in Pakistan is higher as compared to the other vegetables because of its use in salads. However, the diseases of cucumber such as Angular leaf spot, Anthracnose, blight, Downy mildew, and powdery mildew widely decrease the quality and quantity. Lately, numerous methods have been proposed for the identification and classification of diseases. Early detection and then treatment of the diseases in plants is important to prevent the crop from a disastrous decrease in yields. Many classification techniques have been proposed but still, they are facing some challenges such as noise, redundant features, and extraction of relevant features. In this work, an automated framework is proposed using deep learning and best feature selection for cucumber leaf diseases classification. In the proposed framework, initially, an augmentation technique is applied to the original images by creating more training data from existing samples and handling the problem of the imbalanced dataset. Then two different phases are utilized. In the first phase, fine-tuned four pre-trained models and select the best of them based on the accuracy. Features are extracted from the selected fine-tuned model and refined through the Entropy-ELM technique. In the second phase, fused the features of all four fine-tuned models and apply the Entropy-ELM technique, and finally fused with phase 1 selected feature. Finally, the fused features are recognized using machine learning classifiers for the final classification. The experimental process is conducted on five different datasets. On these datasets, the best-achieved accuracy is 98.4%. The proposed framework is evaluated on each step and also compared with some recent techniques. The comparison with some recent techniques showed that the proposed method obtained an improved performance.

Funder

National Research Foundation of Korea

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 46 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Prototype of chili pathogen early detection system by using multispectral NIR/NUV;IOP Conference Series: Earth and Environmental Science;2024-08-01

2. A Light Weight CNN Based Architecture for the Detection of Early and Late Blight Disease in Tomato Plants in Real-Time Environment;IGARSS 2024 - 2024 IEEE International Geoscience and Remote Sensing Symposium;2024-07-07

3. Advancing common bean (Phaseolus vulgaris L.) disease detection with YOLO driven deep learning to enhance agricultural AI;Scientific Reports;2024-07-06

4. A Knowledge-Guided Competitive Co-Evolutionary Algorithm for Feature Selection;Applied Sciences;2024-05-24

5. Revolutionizing Cucumber Agriculture: AI for Precision Classification of Leaf Diseases;2024 6th International Conference on Electrical Engineering and Information & Communication Technology (ICEEICT);2024-05-02

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3