Preparation and Characterisation of Cellulose Nanocrystal/Alginate/Polyethylene Glycol Diacrylate (CNC/Alg/PEGDA) Hydrogel Using Double Network Crosslinking Technique for Bioprinting Application

Author:

Asohan Anusha Wei,Hashim Rokiah,Ku Ishak Ku MarsillaORCID,Abdul Hamid Zuratul AinORCID,Jasme Nurshafiqah,Bustami YazminORCID

Abstract

In this study, we aimed to prepare and characterise hydrogel formulations using cellulose nanocrystals (CNCs), alginate (Alg), and polyethylene glycol diacrylate (PEGDA). The CNC/Alg/PEGDA formulations were formed using a double network crosslinking approach. Firstly, CNC was extracted from oil palm trunk, and the size and morphology of the CNCs were characterised using TEM analysis. Secondly, different formulations were prepared using CNCs, Alg, and PEGDA. The mixtures were crosslinked with Ca2+ ions and manually extruded using a syringe before being subjected to UV irradiation at 365 nm. The shear-thinning properties of the formulations were tested prior to any crosslinking, while the determination of storage and loss modulus was conducted post extrusion after the Ca2+ ion crosslink using a rheometer. For the analysis of swelling behaviour, the constructs treated with UV were immersed in PBS solution (pH 7.4) for 48 h. The morphology of the UV crosslinked construct was analysed using SEM imaging. The extracted CNC exhibited rod-like structures with an average diameter and length of around 7 ± 2.4 and 113 ± 20.7 nm, respectively. Almost all CNC/Alg/PEGDA formulations (pre-gel formulation) displayed shear-thinning behaviour with the power-law index η < 1, and the behaviour was more prominent in the 1% [w/v] Alg formulations. The CNC/Alg/PEGDA with 2.5% and 4% [w/v] Alg displayed a storage modulus dominance over loss modulus (G′ > G″) which suggests good shape fidelity. After the hydrogel constructs were subjected to UV treatment at 365 nm, only the F8 construct [4% CNC: 4% Alg: 40% PEGDA] demonstrated tough and flexible characteristics that possibly mimic the native articular cartilage property due to a similar water content percentage (79.5%). In addition, the small swelling ratio of 4.877 might contribute to a minimal change of the 3D construct’s geometry. The hydrogel revealed a rough and wavy surface, and the pore size ranged from 3 to 20 µm. Overall, the presence of CNCs in the double network hydrogel demonstrated importance and showed positive effects towards the fabrication of a potentially ideal 3D bioprinted scaffold.

Funder

Ministry of Education

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3