Abstract
This study develops and characterizes the distinctive mechanical features of a stainless-steel metal stent with a tailored structure. A high-precision femtosecond laser was used to micromachine a stent with re-entrant hexagonal (auxetic) cell geometry. We then characterized its mechanical behavior under various mechanical loadings using in vitro experiments and through finite element analysis. The stent properties, such as the higher capability of the stent to bear upon bending, exceptional advantage at elevated levels of twisting angles, and proper buckling, all ensured a preserved opening to maintain the blood flow. The outcomes of this preliminary study present a potential design for a stent with improved physiologically relevant mechanical conditions such as longitudinal contraction, radial strength, and migration of the stent.
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
17 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献