Abstract
This paper proposes a zero-speed vessel fin stabilizer adaptive neural network control strategy based on a command filter for the problem of large-angle rolling motion caused by adverse sea conditions when a vessel is at low speed down to zero. In order to avoid the adverse effects of the high-frequency part of the marine environment on the vessel rolling control system, a command filter is introduced in the design of the controller and a command filter backstepping control method is designed. An auxiliary dynamic system (ADS) is constructed to correct the feedback error caused by input saturation. Considering that the system has unknown internal parameters and unmodeled dynamics, and is affected by unknown disturbances from the outside, the neural network technology and nonlinear disturbance observer are fused in the proposed design, which not only combines the advantages of the two but also overcomes the limitations of the single technique itself. Through Lyapunov theoretical analysis, the stability of the control system is proved. Finally, the simulation results also verify the effectiveness of the control method.
Funder
Zhejiang Provincial Natural Science Foundation
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献