Design of a Damping Controller Using a Metaheuristic Algorithm for Angle Stability Improvement of an MIB System

Author:

Khawaja Abdul Waheed,Kamari Nor Azwan MohamedORCID,Zainuri Muhammad Ammirrul Atiqi MohdORCID

Abstract

Low frequency oscillations in large power systems may result in system instability under large disturbances. Power system stabilisers (PSS) play an effective role in damping these low frequency oscillations by injecting a modulating signal in the excitation loop of a synchronous machine. A new metaheuristic optimisation algorithm termed the sine cosine algorithm (SCA) was proposed for optimising PSS controller parameters to obtain an optimal solution with the damping ratio as an objective function. The SCA technique was examined on a single machine infinite bus (SMIB) system under distinct loading situations and matched with a moth flame optimisation technique and evolutionary programming to design a robust controller of PSS. The simulation was accomplished using a linearised mathematical model of the SMIB. The performance of a designed lead lag-controller of PSS was demonstrated using eigenvalue analysis with simulations, showing promising results. The dynamic performance was validated with respect to the damping ratio, the eigenvalue’s location in the s-plane and rotor angle deviation response to demonstrate system stability.

Funder

Higher Education (MOHE) and the Universiti Kebangsaan Malaysia

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference37 articles.

1. Power System Stability and Control;Kundur,1994

2. Power System Dynamics: Stability and Control;Mchowski,1997

3. Power System Control and Stability;Anderson,2002

4. Artificial Intelligent Based Damping Controller Optimization for the Multi-Machine Power System: A Review

5. Swarm Intelligence Approach for Angle Stability Improvement of PSS and SVC-Based SMIB

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3