Effects of Loading Conditions on the Pelvic Fracture Biomechanism and Discrimination of Forensic Injury Manners of Impact and Run-Over Using the Finite Element Pelvic Model

Author:

Li ZhengdongORCID,Zou Donghua,Zhang Jianhua,Ma Kaijun,Chen Yijiu

Abstract

This study aimed to systematically simulate the responses of pelvic fracture under impact and run-over to clarify the effects of boundary and loading conditions on the pelvic fracture mechanism and provide complementary quantitative evidence for forensic practice. Based on the THUMS finite element model, we have validated the simulation performance of the model by a real postmortem human pelvis side impact experiment. A total of 54 simulations with two injury manners (impact and run-over), seven loading directions (0°, 30°, 60°, 90°, 270°, 300°, 330°), and six loading velocities (10, 20, 30, 40, 50, and 60 km/h) were conducted. Criteria of effective strain, Von-Mises stress, contact force, and self-designed normalized eccentricity were used to evaluate the biomechanism of pelvic fracture. Based on our simulation results, it’s challenging to distinguish impact from run-over only rely on certain characteristic fractures. Loads on the front and back were less likely to cause pelvic fractures. In the 30°, 60°, 300° load directions, the overall deformation caused a “diagonal” pelvic fracture. The higher is the velocity (kinetic energy), the more severe is the pelvic fracture. The contact force will predict the risk of fracture. In addition, our self-designed eccentricity will distinguish the injury manner of impact and run-over under the 90° loads. The “biomechanical fingerprints” based on logistic regression of all biomechanical variables have an AUC of 0.941 in discriminating the injury manners. Our study may provide simulation evidence and new methods for the forensic community to improve the forensic identification ability of injury manners.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Shanghai

Shanghai Key Laboratory of Forensic Medicine

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3