Abstract
In the production of coconut oil for consumption, cleanliness and safety are the first priorities for meeting the standard in Thailand. The presence of color, sediment, or impurities is an important element that affects consumers’ or buyers’ decision to buy coconut oil. Coconut oil contains impurities that are revealed during the process of compressing the coconut pulp to extract the oil. Therefore, the oil must be filtered by centrifugation and passed through a fine filter. When the oil filtration process is finished, staff inspect the turbidity of coconut oil by examining the color with the naked eye and should detect only the color of the coconut oil. However, this method cannot detect small impurities, suspended particles that take time to settle and become sediment. Studies have shown that the turbidity of coconut oil can be measured by passing light through the oil and applying image processing techniques. This method makes it possible to detect impurities using a microscopic camera that photographs the coconut oil. This study proposes a method for detecting impurities that cause the turbidity in coconut oil using a deep learning approach called a convolutional neural network (CNN) to solve the problem of impurity identification and image analysis. In the experiments, this paper used two coconut oil impurity datasets, PiCO_V1 and PiCO_V2, containing 1000 and 6861 images, respectively. A total of 10 CNN architectures were tested on these two datasets to determine the accuracy of the best architecture. The experimental results indicated that the MobileNetV2 architecture had the best performance, with the highest training accuracy rate, 94.05%, and testing accuracy rate, 80.20%.
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Reference33 articles.
1. Digital holographic imaging of aerosol particles in flight
2. Annotation-free learning of plankton for classification and anomaly detection
3. amirberAgain, Python and openCV to Analyze Microscope Slide Images of Airborne Particleshttps://publiclab.org/notes/amirberAgain/01-12-2018/python-and-opencv-to-analyze-microscope-slide-images-of-airborne-particles
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献