Classification of Adulterated Particle Images in Coconut Oil Using Deep Learning Approaches

Author:

Palananda AttaponORCID,Kimpan WarangkhanaORCID

Abstract

In the production of coconut oil for consumption, cleanliness and safety are the first priorities for meeting the standard in Thailand. The presence of color, sediment, or impurities is an important element that affects consumers’ or buyers’ decision to buy coconut oil. Coconut oil contains impurities that are revealed during the process of compressing the coconut pulp to extract the oil. Therefore, the oil must be filtered by centrifugation and passed through a fine filter. When the oil filtration process is finished, staff inspect the turbidity of coconut oil by examining the color with the naked eye and should detect only the color of the coconut oil. However, this method cannot detect small impurities, suspended particles that take time to settle and become sediment. Studies have shown that the turbidity of coconut oil can be measured by passing light through the oil and applying image processing techniques. This method makes it possible to detect impurities using a microscopic camera that photographs the coconut oil. This study proposes a method for detecting impurities that cause the turbidity in coconut oil using a deep learning approach called a convolutional neural network (CNN) to solve the problem of impurity identification and image analysis. In the experiments, this paper used two coconut oil impurity datasets, PiCO_V1 and PiCO_V2, containing 1000 and 6861 images, respectively. A total of 10 CNN architectures were tested on these two datasets to determine the accuracy of the best architecture. The experimental results indicated that the MobileNetV2 architecture had the best performance, with the highest training accuracy rate, 94.05%, and testing accuracy rate, 80.20%.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference33 articles.

1. Digital holographic imaging of aerosol particles in flight

2. Annotation-free learning of plankton for classification and anomaly detection

3. amirberAgain, Python and openCV to Analyze Microscope Slide Images of Airborne Particleshttps://publiclab.org/notes/amirberAgain/01-12-2018/python-and-opencv-to-analyze-microscope-slide-images-of-airborne-particles

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Marine-Hydraulic-Oil-Particle Contaminant Identification Study Based on OpenCV;Journal of Marine Science and Engineering;2022-11-21

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3